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ABSTRACT

A generalized descent algorithm theory is developed for uncon-
strained minimization problems. Here a descent algorithm is defined
as a computational procedure where at each iteration a descent direc-
tion 1s determined and a single-dimensional search is made for the
minimum in the descen* Airection. The theory is shown to be a gener-
alization of the three most common descent algorithm’; gradient, con-
jugate gradient,and Fletcher-Powell.

Execution of the single-dimensional search can be computa-
tionally time consuming. Two additional algorithms are presented which
reduce or eliminate single-dimensional search time. The first is a
modification of Davidon's Variance Algorithm and requires a rinimal
single -dimensional search. The second is a dircct methed for winimiz-
ing a special class of quadratic functions of the foim

1/2}{x] ]2 + 1/2 k(2 - m'x)2.
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SYMBOLS

HARWEYTITR FITe FR 1T SN Ve s IRy
1

belongs to, is a member of; x€X: x is a member of the

A set X
] > avproaches, converges to
+ monotonically decreasing; f(xp)+L: £(x;) monotonically

decreases to the value I

[y,2z] value of the continuous linear functional y operating
on the vector z. In a Hilbert space this is the inmer
product of the vector y and =. Also, a closed interval
on the real line, alternate to parenthesis, and referen.es;
context will make usage clear.

|}x]{ The norm of the vector x

V) The union of sets

C is a subset of (or equal to)

matrix or vector transpose except in -Section II where
t' is tne derivative of f.

RN - 1clidean N-space
D2 second differential operator

{M}y; element of the ith row and 3th column of tk: matrix M
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SECTION I

INTRODUCTION

1. BACKGROUND

In virtually all fields of the physical sciences,and particularly
ir engineering,the digital computer is the principal tool used in the
solution of complex problems. The speed and flexibility of the com~
puter has ln many cac2s changed the nature of the problems that can be
solved, i.e., the solution must not only meet specific constraints but
must alsc he the best or optimal in some specified sense. There are
three interrelated tasks in the formulation of such an optimization
problem.

First, the physical system or process must be described mathemati-
<ccdy or modeled in terus appropriate for computation. Second, the
measure of goodness, generally referred to as the cost function, penal-
ty function or payoff function must be defined to adequately describe
how one solution compares to another. Finall:, computational methods
must be applied to find a solution which satisfies ti.> mathematical
model and cost function in such a way so as to extract the best or
optimum solution.

Generally such a problem can be cast into a constrained optimiza-
tioi oroblem _uch as: Find the solution x which minimizes the cost
function f(x, while satisfying specific constraints described by
2(x)=0. Often the pretlem can be simplified, conceptually, by adjoin-
ing the constraints to the cost function through the use of Lagrange

multipliers. Thus rhe constrained optimization problem is converted

p———
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to the following unconstvsined problem: Find the solution (x,A) which

extremizes the cost function F(x,A)=£(x)+Ag(x). The existerce of such
Lagrange multipliers is a subject in itself.

Another method of solving the constrained optimization problem is
to restrict the problem to a subspace, an approximation to the con-
straints for example, and considering a related unconstrained problem
as an intermediate step in obtaining the solution to the constrained
problem. Since the simplified unconstrained problem may have to be
solved many times in order to obtain the solution of constrained prob-
lem, an efficient method of solving the unconstrained problem is essen-
tial. Finally, the solution of the unconstrained problem is often of
iaterest in itself,

The subject of this thesis is the computational methods which may
be used to arrive at a minimizing solution to the unconstrained minimi-
zation problem. It is tacitly assumed that any constraints are ac-
counted for through the use of Lagrange multipliers or other valid
techniques, such as penalty factors.

° OUTLINE AND PREVIEW OF SECTIONS

For functions vhich have a continuous first derivative the most
common methods used to minimize the function, i.e., obtain the solution
to the unconstrained minimization p:oblem, are the gradient, conjugate
gradient, and Fletcher-Powell algorithms. These algorithms are reviewed
briefly to illustrate certain comwon elements. Here it is assumed the
function to be minimized is f which is defined for each x in some space
X. Further, assume the gradieat, g, of f at x also exists:
g(x)=grad f(x). For each algorithm only the initiaiizations required

and the recursive equations are given. Convergence criteria or tests
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for convergence although important in computational applications are
omitted here in order to emphasize those properties whkich these algorithms
have in common.

Gradient Algorithm:

Initially: choose an arbitrary x,
Iteratively: set s, = -g{xg)
choose o=a,; to minimize f(x,+as,)
set X, 41=%n + Sy -

Conjuzate Gradient Algorithm: (Reference 5)

Initially: choose an arbitrary x,
set 5, = -g(x,)
Iteratively: choose a = a, to minimize f(x +us;)
set xp31 = X + a8,
_ Hetarn) 112
B lig(xy)
Spil = ~8(Xp41) + Bysy,.

Fletcher—-Powell Algorithm: (Reference 4)

Initially: choose an arbitrary x,
set Hy = T
Iteratively: s, = -H,g(x,)
choose a = o to minimize f(xpytas,)
set X 47 = X, + a,8,
On = X+l T X,

yn=g (xl\+l) -8 (xn)

Ho4p=H, - Hoyayplly + T

Yathyin 9n¥n

where the prire (') denotes transpose.

— TR
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Each cf these algorithms generates a search direction, s, for
which the function, fnitially at least, terds to decrease, i.e., for
which g’ (x,)s <0. A single-dimensionzl search is then conducted to
obtain the minimum of £ in the direction s, from the current point x,.
The location of the minimua of the single-dimensionai search is chosen
as the next iteration point, x,,;. The differeaces betweea the algc-
rithms are in the method used to generate tkc search directions s,.
These algorithms and others which generate a descent directica and in-
corporate a single-dimensional search will be collectiveiy classed as

descent algorithms.

In Section II the proof of a theorem which is a generalization of
descent algorithms is presented. Specific applications to the gradient,
F etcher-Powell, and conjugate gradient algorithe are given at the end
of the chapter.

Niext, consider the problem of minimizing the quadratic function
f(x) = fo + a'x + 1/2x"Gx. The gradient of f at x is given by
g(x) = a+ Gx. Let h = -G lg(x), assuming ¢! exists, then

g(xth) = a + G(x+h)

= a+ Gx + Gh

= g(x) - gx)

=0
that is, x* = xth satisfies g(x*) = 0, the necessary condition for f
to have a minimum at x*. Note that G is the second derivative of f.
Clearly for a quadratic function, knowledge of G or the second deriva-
tive, or better G"l, greatly simplifies the problem of finding the mini-

mum of the function. Since many functions can be approximated by a
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quidratic in some neightborhood of a (local) minimue, information about
: the second derivative, or its inverse, should enhasnce the ability to
% arrive at a solutica to the general uncoostrained minimization probles.
The Newton-Rapkson algorithm is a method of function xinimizatioo
4 vhich utilizes the inverse of the second derivative. In aZdition to
: the computational difficulties of obtaining the secord derivative, this
method requires an iritial estimate sufficiently close to the final
solution before coavergence is guaranteed. Because of these diffi-
culties, several algorithms termed quasi-Newton methcds by Fowell (Befererce i2
have been constructed wvhich iterativily estimate the inverse of the
second derivative. The best known of these is the method of Fletcher-
Powell. Another more recent method of this type is Davidon'’s Variance
Algoritetm, not to be confused wite Devidon's Variznie Meiric Aigorithm
vwhich vas the predecessor to Fietcher-Powell's nethod. A new deriva-
tion of Dav. don's Variance Algorithm ie presented in Section III.
Davidon's algorithm suifers some difficulties and Sectioz III concludes
3 with a wodified version of the algorithm which, although scaewhat more
complex, circumvents one major difficulty.

Whenever a method is available for obtaining the inverse of the
second derivative, particularly for a quadratic function, the minimiz~-
3 ing solution can be obtained directly. 1In Section IV 2 method for the
direct solution of a special class of quadratic minimization problems

is presented. The procedvre is based on the Rank~One method of matrix

Sty ol i ot

b inversion. The algorithm contains a necessary and sufficient test for
the existence of an extremun and a sufficient test that the extremum be

a minimum. The special class of problems to which this method applies

are generalizations of the following form: f(x) = 1/2!|x||2 + k(a-m"x)2.

.
b 5
<
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SECTECE II

DESCENT ALGOIETEMS

In this secticz the proof of a basic thecrem on descent algorithms

is presented followed by applications to several familiar descent algo-
R rivms.

I. NOTAYICE N0 DRFINITIONS

Suppose X denotes a reai normed linear space and f a real-valued
function defired on X. For am arbitrary point x, of X, denote by S the
"level set™ of f at x, i.e., S = {x : £(x)<f(x;)}. The Frechet deviv-
ative of f at x will be denoted £*{(x) and if x%*¢ X%, the tcpological
dual of X, the value of x* at x will be vritten [x%*, x].

Let ¢ denote 2 bounded map from S to X satisfying:

) [£'(x), ¢(x); 2 0 for all x€S, and

(ii) given an 0 there exists §>0 such that

[£'(x), ¢(x)]<5 implies ||’ (x)]]<e.

Observe for later reference that condition (ii) implies that
£f'(x) = 0 wvhenever [£f'(x), #(x)] = 0 for if there exists an x; such that
[f'(xl), ¢(xl)] =0 but £'{x1) # 0 set € = 1/2||£'(x1)|]>0 then
[£°'(x3), Q(xl)] = 0<6 for all & while Ilf'(xl)]|= 2e>e comtrary to (ii).
Condition {ii) also implies [f'(x), ¢(x)] is bounded away from zero
vhenever f'(x) is bounded away from zero in the following sense. 1If
for {xnk}(ZS, I!f'(xnk)|:>e for scme €>0; then there exists a
subsequence of {xﬂk} and >0 such that [f'(xak), ¢(xck)];§.

In the theorem which follows, -¢(x) serves to define the descent

direction.
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2. Z2ASIC TEIDRAY 0¥ SINERALIZED DFSCINT ALCCRITEMS

Mary of the ideas in the Zolliowing thesrem, were stimmlizred
by two papers by A. L. Goldstein {Beferences 6, 7). In
particvlar the cefinition of § given above and the form of the con-
clusices of thz theorem are identical ro those of Goldstein. The hy-
potheses of the theorem are changed to specialize to the case of a
single-dimension2l search at each iteratica. Thus the proof of part
(a) of the theorem is changed. The proo*s of parts (b) and (c) foliow
Goldstein. The following <dditional rerark cn the nypotheses is in
order.

In the curreat setting where X is a normed linear space, the
assumption that f' is mifornly coatinvsus oz S may be replzced with
the equivalent conditions that f is wmifornly differentizble and that
£' is bounded cn S (Peference 1%, . 15).

Theorem 1

Assume S is bounded in X, f is bounded below on S and the Frechet-~
derivative f' of f exists, is uniformly continuous on S 2nd bounded on S.

Set x4 = X, when [£°(x5), ¢(x,)] = 0, othervice choose p=p, to
minimize {f(x; - p9(x3}):0:0} and set %4 = x; - ppé(x,)- Then

(a) £(x;) +L, £'(x,)*0,

(b) 1if {x,} has cluster points, every cluster point z

satisfies f{z)=L, f'(z2)=0.
(c) 1If f£' has finitely many zeros on S, S is compact, and
]Ixn+1 - x,] 140, then the sequence {x;} converges.
(a) For x¢S and f'(x) # 0, [f'(x), 4(x)]>0. In general, since f

is differentiable,
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[£'(x), k] = 1im %(f(mh) - £(x))
E t+0

L(g(x4th) - £(x))

- t

= 1im
t+0

= lim _%(f(x-oh) - £(x)),
P

so in partirular,

0 <[£'(x), ¢{x)] = lim _%(f(x-mx)) - £(x)).
[

By the umniform differentiability of f there exists 3 p,>0, independeat
of x, such that

] O —{Elxpo#(xd} ~ £6))
. so,
0> £ (x-p 8 (x)) - £(x)

or

£ (x-£ 44 (x))<f(x).

In particular for x = xnes, f(% - ooé(yn))<f(xn);f(xo).

Alsc for £f'(x) # 0, [£'(x), ¢(x7] # O, hence ||$(x)]|]|>0. Since s
1s assumed Dounded, there exists a p_>0 such that for all p>p,,
x - p’(x)¢$. For on the cuntrary assuoption, for every N, nc matter
how large, there exists a °N>N such that y = x - pué(x)CS. Then
Hy-x{] = pxllé(x)”ﬂl”é(x)“ is unbounded which contradi:ts the
7 boundedness of S.

Now for x €S such that f‘(xn) #0, Flo) = f(x, - p¢(xn)) - f(xn)

’ has a minimum at onEIO, ca] since F is continuous and [0, °a] is compact.
Furthermore, p, # 0 since F(po) = f(x, —05¢(x,)) - £(x;}<F(B). Thus
the sequences {p,} and {x,} are well defined and f(xp4p) = £0Oq -

pn¢(xn))<f(xn) vhich implies the sequence {x;}CS, and the sequence

8
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{f(x))) is strictly decreasing. Since f is assumed bounded below
f(x,) #L.

Yo shew £'(x,) +0, we suppose the cootrary, thea there exists a
subsesvence {x,,k}g {x,} such thar £'(x. ) is bomded away from zero,
vhich implies that a rubsequence of [f'(xnk), $(xa, )] is
2 bounded avay from zeio. Without icss of gemerality denote this
' subsequezce by {xp J. Then there exists an €,>0 such that

CoclE" i)y $lm )] = J00 D (Flgy - 9#(x, ) - £l d). Stnce
is wiforely differentiable, there exists a py>0, independent of x
(1.e., x,.), such that

o .1
3 < :p—l; (£(xy, - pp#05, ) - £(x,, ),

) .
2 f-.xnk - pbO(xn.‘)) - f(‘nk):

or f(xnk - ob¢(xnk)) < f(xnk) - ’l;co .

€o

Then f(*nk'l-l; < f(‘nk - obé(xnk)) < f(xq) -

J:

Since f(xn) +L,

£Qxg,) < £lxg, 1)< <Elxy, 41 < £x,, 5 - 2o

)
-~

t.at is,

£(xg,) < Elxg ) - "t;‘o

< f(xno) -k pgco .

4 This coniradicts the assumption that f is bounded below, hence f'(x,)-+0.
9
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() If z is a closter point of {x,} there exists a subsequence

EYSSaly

(xnklgixnl such that x +z (ia norm). Siace f and £' are contisuous,

£(xy)+L and £'(x,)+0, it follows that f(z) =L and £'2) = O.

T

(c) Since f'(z) = O for every cluster point z of {x,}, the mumber of

roots of f* on S is egual to or greater than the number of cluster
points of {x.n}- If £* has 2 wnique root z on S then {x,} converges to
it; fer otherwise, since S is assumed ocompact, there exists at least
one claster point z; of {x;} in S vhere £'(z;) ~ 0 (by ()). If

z; # z, the rooz of f' is not unique. If the nunber of roots of f' on
S Is finite thea the nuber of cluster poicts of {x,} is finite also.

Let z;, 1 = 1,2,...,k be the cluster points of {xu}, let
e = min{]|z; - z5ll: 1#35, 1,3 = 1,2,...k}, let S(zj,¢/3) denote the
open sphere of radius ¢/3 centered at zj. Since S is assumed compact
the set {x } -;,1 S(zi,zl3) contains a finite number of poiuts, say =.
Since ”xn”_ - xn||+0, by assumption, there exists an K such that
”‘p-l'l - xP||< ¢/ for ali poN.

Now, since the z;, 1=1,...k are cluster points of ix,}, there are
mesbers of {xn} in each S(zj,e/3) for which w>K. Therefore fix n>N such
that x,€S(z;, €/3), for some fixed i, and "nfl¢ 5(zg,€/3). Let xq
be th: next member of the sequence ’xn} {i.e., g>n) such that xqgs(zj,
e/3), for some j # 1 and xq_1¢$(zj,e/3).

Since x,€S(z5,€/3) and quS(zj, €3), 143, ”xn - z\‘||>e/3.
On the other hand, cince n, g>N, we have

[xg = % [1<llxq = xqoa 1+ 1lxg_q = = o1} + =

+ lxpez = xead ] + Hlxger = xp!
q-1 q-1
< bt~ xplIT S em &

i0
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£ iy - £ .-
Then 3 <ip:q xn” < (g¢n) = n<q-a.

Kouw the set of points x,,, X 19- °°°, xq-l selong to the set

k

{x} -  S(z;, e/3). But teere are (g-1) - (n¥1) + i = g=1 polats
i=]1

iz the set {xni-l’ .ee, xq__ll, and by suppositiwm o poirts in the set

k
{x,} - U S(z;, €/3). 7kus m2g-n-1. Oc the other hand we have just
i=1

skowmn qoon, thus 2g-no-1m-1, that is to say g -1 = m. Heuristically,

k

all the points of the set {x;} - U S(z;, €/3) have been accounted for,
i=]1

or “used up”™. But by the same argmeut, there exists an n'>q and a
q">n’ such that xn-CS(zj, €/3) and xn-+1¢s(zj, €f3), for thc j de
fined by q above (i.e., for which Xq €:S(zj
L # 35, and xq'-1¢$(zl’ €/3). Then there are agzin ¢"-n'-1 = m points

» €/3)), and xg.QS(zl, e/3),

in the set {%-,}1, X 1495 *°%5 X -_1} which also belong to the set

q
k
{x}-u S(z;, €/3). There now arc 2a points in this set which by
i=1

supposition contained only m. This contradiction persists unless we
suppose {x;} has a unique cluster point,

Conments on the Basic Theorea

The first conclusion of the theorem, f(xn)+L, can bz obtained
with the weaker assuzption tnat f is differentizble and without the
assunption that ¢ is bounded, in wkich case both o and p, are dependent
on x (or xn). However, both uniforu differentiability of f, which fol-
lows from the uniform continuity of f', and boundedness of ¢ were used
to assure the existence of a fp which uniformly bounds the differential
away frem zero in the proof leading to f'(x,)~+0.

a4
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If X 15 finite dimensional then S beirg closed ané bounded iz
mecessarily coxpact and {x,}CS hus cluster points. Hence conclusion
(M) of the theorex applies.
3. APPLICOTICN OF T=E RASIC TEZ0ERM TO OOMMOX DESCENT ALGORTTEMS
In the applications which follow, the boundedness of ¢ will be de~
rived from tke bomndsess of the Frechet derivative €' cf f on S. In
particular, assume aow that X is a Hilbert space so that f'(x) can be
Teprasented by its gradient VE(x) in X. Then also since in a Eilbert
space every bounded set is weakly compact, the boundedness of £' on S
follows from its coantincity om S{2eference .3, z. 19).
Coro I
Let Q be a pesitive definite continuvous linear operator on X,
let ¢(x) = QIf(x), then Theorem I applies.
Proof:
Since f has the required properties, all that remains is to
show § 1s bounded and satisfies conditions (1) and (ii1).
By assumption f' is uniformly continuous and bounded on S. This
tcgether wvith Q being a2 continuous linear operator or X implies § = QVEf
is bounded on S.
Q positive detinite implies there exists a m>0 such that
m}|z]}2 <[z, Qz] for all z in X,
hence
(£ (x), ¢(x)) = [£'(x), Qf' (x)12 =][¢'(x)|]2 20 and condition (i)
is satisfied.
To show condition (ii) assume an ¢>0 and choose ¢é=me?. Then
[£'(x), #(x)]}< 6=me? inplies mllVf(x)]lngVf(x), QVf (x)]< &=me? or

Fief(x)|]<e.
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In order to demcnstrate that the theory developed thus far is a
generalization of descent algorithms, the Theorer and Corollary will be
applied to two common algoritims; the gradient and the Fietcher-Puwell
methods.

Applicatior to Gradiemt Algorithms

Let Q in Corollary I be the identity operator, i.e.,
¢(x) = 7f(x), this is the usval gradieat algoritha.

Tae operator Q need not remain fixed so long as it is uniformly
positive definite on S. That is to say there exists 2 constant »0,
independent of x, such that [£'(z), $(x}] = [£f'(x), O(x)VE(x)]2n] |VE(x){]2
for ali x ia S.

Applic.~for to Fletcher-Powell

Let X be finite dimensicnai, let Q@ = Q(k) = B as defined

by R. Fletcher and M.J.D. Powell in Reference 5. Using tze
algorithn of Fletcher-Powell it is easy to prove Hy remains positive
definite at each iteration unless the algoritha temminates in a finite
number of steps. Thea ¢(x;) = H Vf(x,) satisfies condition (i):
[£'(x;), ¢(x;))20. Now if the Hy are uniformly positive definite, or
if there exist constants m>0 and p>0, independent of k, such that
[x, Hx]2 n”x”p, then condition (ii) is satisfied. For given an
€>0, choose 6=mcP, then m”f'(x)”p;[f'(x), ka'(x)]< $=me” implies
Hf'(x)”<c. Then the theorem applies to the Fletcher-Powell algorithm.
Furthermore, since S is closed and boundcd, it is compact, and the
sequence {xk} necessarily has cluster points so (b) of the theorem ap-
plies ithout further assumption.

In the above application to Fleccher-Powell's method and in the

following corollary, the function ¢ is not uniqueiy defined as a

13
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function from S into X. Rather, 3 1is defined only sn the scquence {::n}

and its value at an arbitrary x in S depends upca =i.ich sequence x be-
longs to. Howsver, the properties of § used in the procf of Theores I
did not depend on ¢ being defined anywhere ercept at points of the ce-
quence {x,j. That is to say the conditions (i) and (ii) need hold only
at the points of the sequence {x,}. Within this context the search
direction will continuz to be denoted by -¢(x,).
Corollary II
Let ¢(x)) = V£(x,) and
#(xy) = VE(xy) + K o(x ;) for n = 1,2...
where I!n|g<1, then Theorezm I applies.
Proof:
Clearly conditions (1) and (ii) are satisfied at x, for
(£ (x,), #(x))]= HV:‘.(;:(,)H2 20, and given €>0 choose § = e2.
Claim [f'(x,;1), ¢(x,)] = 0 for n = 0,1,.... Since p, 1s
choser to minimize {F(p) = £(x; - pé$(x,)) - £{x,): ¢>0}, F' (pn) = 0.
But F'(p) = - [£'(x5 - p¢(x5)), ¢(x))] and at p=p , x; = p d(x;)) = x ..
Hence F'(p,) = - [£f'(x341), ¢(x)] = 0.
Then for n = 1,2,...
(£ (x), 6(xy)) = [£7(xy), VEQxy)]) + Ky (€7 (x) 5 40, 1))
= (VE(x,), VE(xy)]
= [lveGp|]%>0.
Hence again, given €>0 choose & = €2 then [£'(x,), ¢(x,)] < & implies
HvE) ]l = JlE'(xy)]] < €. Thus conditions (i) and (ii) are satisfied.
To show boundedness of the ¢ (x,) consider
ot |12 = [o(x), 80xd] = [VEGr), $(xp)] + K [o(xg_1)s (xg)]
« |JVEG) |12 + K [8(xq-1), ¢0xp)], and

1k




TTF R NTOTR YA AL PR e yr s e N

AFFDL~TR-T2-T7

[00,), $(xy1)1 = [VECGx)), 6(x; )] + K [o0x, 1), ¢(x; )]
= K, | box )12
Thus, |leCx )12 = [1vEG) ]2 + K| [e 0, )] |2

Applying this relation recursively yields

Hotx ) 12 = [1vEG) |12 + k(] |veGe D12 + R2 5[ Totx, 50 (]2}
= ||vE ) 2 + KE[9E Gpe) 12+ KEE oGy |12
oG 112 = [1vE6) |12 + K1 [2£00) |12 + K2R3 | [vEOxp) | |2

bR e K9Gy |2
+ Ky e 1[G 2.

Since £'(x) is bounded for x€S let M = sup ||VE(x)]]|
x€S

then
[eex )12 < {1+ K2 + K2K2_; + +oo + KK2_; oo K%K%}Mz_
Also K% s r <1, so the series
{1+ K2 + K2K2_; + o+ + K2KZ_; «+0 kK2K2)
converges. Hence l|¢(xn)||2 is bounded and therefore ¢(x,) is bounded.
For a trivial application of Corollary II, K, may be set to zero
for all n, this then generates the usual gradient algorithm. The fol-
lowing applfcation is of much more interest.

Application to Conjugate Gradient

Let K, = [VE(x,), VE(x) T
[V£ (% 1) VE (x53-1) ]

in Corollary II.

This is the B,_j of Fletcher-Reeves (Reference 5) for X = R%, and lLasdon,

Mitter and Warren (Reference 10), for X a function space.

15
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The condition lKnl £ r < 1 may appear overly restrictive particu-
larly in the light of the paper by Lasdon, Mitter and Warrem which also

is set in a Hilbert space H. Unfortunately, the proof of Lasdon, Mitter

and Warren contains one minor but signficant discrepancy. The proof of
their theorem is reproduced and corrected, to illustrate the simi-
5 iarities of the constraints which must be imposed on K, or B, ;.

Theorem 3 of Lasdon, Mitter and Warren

2 If: 1. J(u) is bounded below,
Ze J(u) and g(u) = grad J(u) are continuous,
3. D2J(u,h,h) exists and {D23 (u,h,h) | glmllhlf?ot m > 0 and
all u,h in H,
4. {u.} has a cluster point u¥,
then the sequence {u } formed with arbitrary u, by applying the con-
: Jugate gradient algorithm to J(u) has the following properties:

; 1. 1lim J(“k) = J(u*),
3 koo

2- 1m 8(Uk) = g(u*) = Oo
koo

Before presenting the proof the following three remarks are

. pertinent:

1. Here D2J(u,h,k) is the second differential of J at u.

2. The form of the algorithm is exactly as given in Section I.2
evcept here the independent variable is u instead of x.

% 3. Frem the above proof of Corollary II it follows that

[gk,sk] = -Ilgkllz and [sk,gk+1] = 0 for all k.

Corrected Proof of Theorem 3 of Lasdon, Mitter and Warren

From Taylor's Theorenm,

: J(uk + asy) = J(uk) + a[gk,sk] + l/2u2D2J(€k(a),sk,sk)
; 16
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wvhere £(a) belongs to the line scgment joining up and uk+as-‘. Then,

using [sy.8x) = ~|1gy]1? and assumption 3,

J(utasy) < J(u) -allgk”z + 1/2a%n| lsk!lz.

Since a=a, minimizes I(y + ask),

J(uk + qsy) = Iy < J(u.k + _}sk)
< 3@ - lgl12 + 2lis 12

At this point Lasdon, Mitter and Warren assume HskH = ”gk”
in their proof of this {heorem. This is cleariy inconsistent with
lsk,gk] = "I =8k| |2 for by the Cauchy-Schuarz inequality
s, e 1] < ”skll I{g, || where equality holds if and only if sy is a
multiple of g,. Thus |[g |12 = |Is.g, 31 < s Il gy ller
”ng < HskH Specifically, equality holds only when k=0
(i.e., So = -go) or g, = 0 in which case the solution has been achieved.

Proceeding more carefully, observe that sy = -8y + Bk—-lsk-l’

Hskllz = {Sk,sk] = -[Sk,gk] + Bk-llsk’sk-ll
= Hgkl 2+ Bk—llsk’sk.ll
and [sk—l’sk] = -[Sk_l,gk] + Bk"llsk-'l’sk-l]

= B3 [sK-108k-11>
or s, 112 = gy l12 + 83y Hlsp-a 11

Then

A

Jgn) £ 30 = g 117+ 21112 + 8oy Noey1D

|

1 1
I(yu) - 'z—njllgkllz + Eﬁi—l ”Sk,IHZ»

Likewvise,

1.2
J(Uk) hY J(uk"l) = —Z—:;I ng__ll |2 + %P’k—l Hsk-zl IZ)

17
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hence
1 1
Iupyy) £ 30y y) - e l1? *"Bﬁz. 2l Isyol 12
- _1 2 2

or in general,

k
Iw,) 3w - 1 Sllg 112+ X 5282115, 112,
Y+l 3T 15 1 jej-1 2®

or

k-1 i k 1
J(uk).s,J(uOHiZ HsgI12 - Zogllz;jlll2
x 1
T - L el

where z; = ..2..?; ”8 !i? - ———Bi"l ”51-1”2°
Since J(u) is bounded below lim z zg exists and is finite, that is to
ke =]
say the series 231 converges.
1 82

Since 221 =2{E”gi| |2 - "%‘”31-1' Iﬂ it follows that
(Reference 13) 1if the series 221 is absolutely convergent,
then each series Z-Z%Hgillz and Zf_zilllsi_lllz is convergent, which
implies ||g1”+0 and 82_;|lsy-111%0. It also follows that
lsgi12 = [lg 112 + 83_; |lsy_1]1%0 £rom which 1t follows that
Ilsih is bounded. On the other hand if Zzi is conditionally con-
vergent (convergent but not absolutely convergent) then each series
Y,Elllgillz and EB%"]:Hsi-lllz is divergent. Of course it still may

o 2m

happen that HgiH-» € and B%_,ll lsi—ll {2+0 (and hence sy 1s bounded).

One way to assure Zzi is absolutely convergent is to assure
zi;p, that is 2m z; = Ilgillz - Bi_lllsi_lilzgp. But
sy 112 = Ty 112 + 82y lssoql12, bence 2n 2y = 2[]g, |12 - [1s, ][220

18
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reqtres [ls112 < 2llg [[2 recart g [12 < fis [17). 3ex
s 112 - 1ls, 12,
11112 = [e,l12+ 82i1s. |12
! s 112
=llg.]]2 @ +8 1%,
1
° Tle, 112

=g l12 @ +8)

- 2 2,
since 8, = |1z, [1%/11s,|]

Similarly,

2
lle,li2 = lls, 112 i+ 8 {122

= [lg 12 @ + 8, +8)))
= ngll2 (1+8, +8,8)
or in general

I 1= Tl 112 0+, % oty + -+ iy = ),

Now 1f 81 ST <1/2 for all {,

LN X J LE X 3 1 ———1—
LB ¥ BBy ¥ o 88y 8 ST 1T

=2
Then ||sk||2< 2|l |12, and 2, >0, and absolute convergeace of 7,
follows from its convergence. The condition B4 < r < 1/2 is stronger
than the condition IKhl <t <1 assumed in Corollary I1I.

Application to Conjugate Gradient in Ry

The classic proof of the conjugate gradient aigorithm for function
minimization in finite dimensional spaces (RN) is based on the Gram-
Schmidt Orthogonalization procedure. Originally the method was
developed for the solution of systems of linear equations. The ex-
tension to the problem of minimizing a quadratic function on RY is
well-known. In theory, the conjugate gradient method finds the minimum

of a quadratic function in at mo:t N steps. However in practice, be-

19
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czuse of round-off error, ¥+l steps are used to obtaim the "exact™
solution.

Applicatiocn cf the conjugate gradient algoritkm to the problem
of miriwizing an arbitrary furctice ie = ascally follows the same
procedure, viz., ceajugzte directioms are used for X+l steps a=d if
the minimun ha2s cot been obtained, the aigorithm is re-started with
the last best estimate (xg;;). In tems of Corollacy II, this means
er1 =~ Kppez = = = 0. This condition may be used to impoce a some-
whar veaker but less instructive conditior cn the K,tg in Corollary 11,

specifically
SIS SRR R IR C CINEEE ) .
(a+ K%Nﬂ + Kg Koy + oo + K3 KFue--K2.) < A etc. for
each sub-cycle. Then [{¢(x)|]2 cA M2 for all k where |[VE(x)]]|%< ¥2.
As a final remark it should be noted that in Corollary II the con-
dition Il%l £1<1 need not be satisfied for ail n but only for 211 n
beyond some point. In the cor jugate gradient algorithm

2
= ”Vf(xn)” X r < 1 implies the gradieat not only converges to
|90y |2

zero but ”Vf(xn)” forms (eventually) a strictly monotone decreasing

sequence.,

20
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SECTIONR ITE
£ EINE-OSZ METEOD (F FUNCTION MINIMEZIVICK

A particular property possessed 5y both the method of cosjugate
gradieats acé the method of Fletcher-Powell is thar either method ob—~
tains the minimum of 2 positive defizite czadratic form; viz., mini-
mizes £(x) = £, + a"x + 1/2 x"Cx, x€X¥, in a finite namber of steps
excepting rowad-off errors. This is accomplished in the conjugate
gradieat algorithm by means of the Gram-Scimidt orthogocalization
process (Beference i). In the method of Fletcker-Powell, this is
accomplished by generating the inverse of the matrix G, specifically,
By = €'l In this sectios another method for geasrating G1 1s pre-
sented whach does not require a single~dimensicnal search for a mininum
as do the wethods of Fletcher-Powell and conjugate gradients.

Although this author arrived at the method independently, the
algorithm is essentially the same as Davidon's variance algorfthm (feference 3).
Although Davidon's proofs are valil, they provide 1lirtle insight for
the user on how the algorithm is structured or why the method works.

The derivation presented here clarifies the structure of the algo-
rithm by emphasizing how the structure leads to the desired properties
at each iteration. Finally, a minor change is incorporated into
Davidon®s algorithm vhich circumvents one difficulty which may be en-
countered when the algorithm is applied to a computational problem.

1. BASIC RARK~ONE METHOD
In Reference 15, Herbert S. Wilf presents a methoa for matrix inwversion

- - -1 e,~1
based on the equation (A + uv') 1. A L .A_i“lA_-
1+v'aly

vhere the prime (') denotes matrix (vector) transpose and it is assumed

Al exists. This equation is easily verified by computing
21
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- sg—1
-3 AlﬁA“)‘L

Sote tha 2 + av' differs from A by a2 matrix, ov®, of raak ove. There-

A+ o)

fore, the above inversios techrigque aad the algoritim developed below

uight well be calied Razli-Coe Merhods.

Fonwing Wilf, suppose € is written fin the form

€=C, +2 uiv ad let C, be the partial sums C, = C; +2 ugw: and
i=1 i=1

D, denote the partizl sum imrersu
D, = C;l = (C + u:l.'i)
Then Coyy = Cy + mpyyoys
ntl

ad D, ; = (C, + iuivi)

=, +0 WL

’(”;1 + Vi)

1+ vpyD “n+1

|
It follows that Dh' = C;l = (Co + z “171)-1 - ¢l providing all compuca-
i=1

tions may be carried out. Obviously the procedure fails if the denom-
inator tem 1 + vx'x+1Dn“n+1 is zero. The implication of such a condition
can be deduced from the results of the following Lemma.

Lemma 1

Assune A is nonsingular, then the matrix B = A + uv' is singular
if and only if 1 + v'A™ u=0.

Proof

Necessity: Assume B is singular, then there exists an x # 0 such

that Bx = Ax + uv'x = 0. Then A Bx = x + A lyv'x = 0 and
22
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vElix = v'x @+ '8} = 0. Bow v'x # 0, for them Bx = 2x = 0
but A is ncusisgulizr. Therefore, (B + v'ix) = 0.
Sefiiciency: Ascume ! + v'dc = O and set x = £ lc £ © for cther-

wise o = 0 20d v'5 I = O whick coctradices 1 + v'alo = 6. Thes
Bx = Ax + uv'x

=u+ w'sle

= (1 +-w'&.ln) )

= 0.
2. STUUCTUREZE JF TEZ BANE-ONE M WIMIZITIQN LEGIRTTEW

An algorithe will bte coostructed for minimizirg the guadratic

fom f(x) = f, + a'x + 1/2 x"Cg, x€CR® and G a positive defirite sym-
metric matrix. The metbod is based on the above technique for gemerat-
ing ¢l Le Bb = C;l, where C, is an arbitrary positive definite sym-
metric matrix such as the identity I. Pick an arbitrary x4 and iet
g, ~ 2 + Gx, = grad f(x,). Assume g, ¥ 0 for othervise x, is the reguired
solution. Set 6, = -Dg,, X3 = X, + 0, g = grad f(xl) = &+ Gx; and
Yo =8] - 8,- Theng; =a+ G(x, + oo) = go ¥ Go,p and y, = Gao. An
improved estinate C; to G is sought such that €10, = Gog = Yor where
C; has the form C; = C, + u;v). Since G is symmetric, being the
Hessian of f, the added constraint uv; = v; is imposed tc assure sym-

metry of C;. Tren the condition to be satisfied is Cj0, = C,0, +

. _ _ Yo — C.O
uju%, = ¥y, OF u) = _0?0_0_0 . But -Cu0, = ~C,(-Dg,) = g, SO
1o
81
1

u;0,
g

kgl =“jl— to be kz =

ulo

1o

up = = kgj. The value of the scalar k is easily determined from

-7, and C; takes the very simple fom
1%

1
=C_ + 8181

[
glo

lo

c Applying the rank-onc inversion formula to C1 yields

1

23
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1 1i 1
~1 1 G e G Dgg'd
glscisc;- o .@tolsn-ollo -
.c. o "@ & .B
1+31°lll 1% © 817081
&%
Bat ‘ibo;l = ‘inoh .F yo)

= ‘iDoyo - ‘iﬂo,

D 2
3;_”0’0
= = = - D .D
Just as )5, = y,, Dyy_ = O, for Dyy, = Dy, 03}-:1 Fo
%
= D,(g; — 5,0 ~ Dcg1 ™ D8, = 9
3 = 1 -
or simply by applying D, " to Oy =Y,
Since D) is the current best estimate of c'l, it is reasorable to
continue the process by computing 65 = -Dig;, xp = x; + 04,
g = grad f(xz) and Y1 =8 - 8; and comsidering 2n improved estimate
C, to G obtained from C;, gy and y; in precisely the same canner. More
generally suppose x;,D, .8, and Cn have been obtained- Set
On = ~Dyga>»
Xp4) = X ¥ Oy
gn+1 = 8r2d £(xg41).
and Yo = Bntl ~ Bp = G-
1
Define D_;; = D, - JnBnt18a+1ln
1
81':+1I.Dnyn
L}
and Cn+l = Cn + Bn+18n41 .
L
8a+1%n
Clearly C,;10, = Cnon + 8041 = “Bn *t By = Y, Go, and

Dnt1¥q = Dnyn = D8+l = DnBp+l ~ P8y = DpBnyy < %n < G-]yn'

2L
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a abitrary y thes Do,y = By. This property is demowstrated by
showing g .0y = 0 25 follows. Simce g .. - &, = Clxpey — X,)»

Op = Tgs1 = %y = € (Ens) ~ ) = Dutps
or -Dyg - C gy - &) = O-
Thea Bizoey = Pobn ~ € 6oy ~ &) * Dufr

= (0, - S H(gps - £,)»

20d 833103 = (41 ~ £)" Uy~ € Dy = 0.
That is to say, ifbuagreosvitbc'lforsmcveaozy, then so does
Das1-

Clearly D_,; cannot be cauputed if the temm 3;+12n7n vanishes.
If this cccurs as above because D, agrees with ¢ on y,» then
Byp = €y, = ¢ Henyy -~ )

=6 l(a+ o, - a-6x)

® Xp41 ~ Xy = Oy = “Dy8,- But also, By, = Dig,yy = D gy. theres
fore Dyg 43 = 0 and if D, is non-singular gps] = O which in turn implies
Xp43 Is the desired solution.

1

By Lemna I, D exists so long as the denominator (1 + v'A "u ia
ntl

the Lemna) does not vanish. In the case of the Dis, D,4) exists so long
as 8041%, ¥+ 8n4+10n8n+l = g;+1Dnyn # 0. Furthermore, C,;; can be ob-
tained froz D,;; by applying the same inversicn technique, hence the

s
denominator in the expression C ., = .+ 8n+18n+1 must not vanish.
?
8a+1%n
There are then two requirements for the existence of D 4; = C;%l and
Cot1 = D;il, nawely: gx;+1Dnyn # 0 and g;+1°n £0,
In the following it is assumed, for the moment, that these require-

ments are satisfied.

25
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The aigoritim may be gereralized to ome for mizimizing am

abiirary fucrion f defimed ca 2 oas follows:

Inftially:

Iteratively:

As an algorithm for adnimizing an arbitrary function, precautions

must be taken 2o 2void instances shere the demssinstor will vanish.

plexity.

The recursive relation ¥or D

Variance Algorithm except tha'. )‘n

cioose am arbiirary x,, set Dy = I
and conpute g, = grad £(x,).

Set Gn””n‘n“‘n*l”n"an‘
Compute g .; = grad f(x ,;),

$et 7, =~ Bpsy ~ 8, 0d

D Bas15a11"s .

compute D oy = D, -
3n+ln B

Ia additioc, for an ardbitrary function, D, =ay not be pocitive defirite
and hence o, = -D,g may not be a descent direction. Therefore, addi-
tional precautions must be incorporated into the algorithm to assure

applicability to arbitrary functions at the expense of increased com-

\ ]
Doty = Pq F‘“—“l——) DuBn+18n41%n
]
Brt1%07n Ba+10n8n+1
D 8.+184410
or D, =D + (-1 _n____g
n+1
Ba+10n8ni1
where }_ =1 - E“Lg_“ﬂ.
gn+1 n n

This form for D h+1 1S essentially the recursive relation of Davidon's

D 11 (i.e., n+1) remaia pusitive definite at each iteration, where tue

26
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above relatiom for 1, is used whenever possfble. Specifically, A, is
chosen such that ax"Dpx<x"Dpgsyx<Sx'D x for all x, where O<acics.

As Davridon’s Varimce Algorithm is preseated in Peference 3,
Dh*l {or v* in Davidon's notation) is corstructed from a test value x*
for x, ;- If £(x*) 2 f(x,), then x, is taken for x,,;, that is the
estimate x* is discarded. As pointed out by Davidon in a footnote
(Feference 3, p. 308) the algorithm can become trapped in 2 lonp. Indeed,
although the poor estimate x* is not used, the gradient of f at x* is
used to modify the estimate, D, of ¢l. Since for most problens f(x)
can be computed much more rapidly than g(x)} = grad £(x), several test
computations of f(x), without the corresponding gradieat, can be made
without undue increase in computation time. The following modification
to Davidon's Variance algoritha provides for a search fcr an improved
estimate for x at each iteration, if necessary, using several computa-
tions of f{x) vefore computing g(x) and updating the estimate of ¢t
Since this search introduces a major change in the algorithms, the form
of the general term is re-derived as follows.

Assume X, &> Dn = C;l have been obtained where g, = grad f(xn),
D, is positive definite, and f(x) = £, + a'x + 1/2 x"6x. Pickanca, such
that f(xn - apDpgn) < f(xn) using a, = 1 whenever possible, otherwise
on is reduced (for example a, = 1/2, 1/4,...) until f is decreased.
This is possible since [f'(x,),-D.g,] = -8' D,8,<0. Set o, = ~a. D g,
Xnti = X, ¥ 0 and compute g.4) = grad f(xn) = g, + Go, and Yo = Bpil
~ 8p = G0,- An improved estimate C 4y to G of the form C ., = C, + u U
is sought such that C 40, = Gon = ¥Yn " 8+l ~ Bn- As before,

= = - v ool d P 4 - 2. " 40O
Cat+1%n = CnOpn * uqupdp = 841 ~ 8 from which uy n+1' n n n
Ua%n

27
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or un-‘ni-l-(l-an)‘n

0
ullcn

since C o, = -a,Cy(Dyg.) = o8, -

For clarity, set v, = g,y — {i - ,)g, and observe u, has the form

% = :! . Then ::n = :9_ = 'vn = 'vn and “:10:1 = vl'lon = vl'lan = k,
k k  udy vpoplk k vao,/k

from wvhich kz = v"lan.

1}
Now C,.; may be vwritten Corl =€, + Van and an application of the
V2%
1}
rank-one inversion formula yields D 45 = c;}l =D, - Dnvnvnnn

1 ] ]
Yo% +v nDn" a

2 [ ]
Since v D,v, = vnDn[3n+1 -8, + ungn]
T
= vpDo¥p + avad g,
JE )
= vl'll)nyn Vnons

Dv v'D
D,;; ®ay be simplified to D,y =D - _nnmm,

VnPn¥n

This form of the algorithm can be shown to have the same properties
as Davidon's form. For example if D, agrees with ¢! on y, 1.e.,.
Dy = G'ly = g, then so does Dy,;. This is demonstrated, as before,
by showing vpDy = 0 as follows:

Dav, = D (8n41 ~ 8n + @8,) = Dyleny) = 84) - oy

but 0 = Xy = Xy = 61 (g4 - 8y)s S0 Dvy = (D - L) (g - 8),
and vpDpy = (gp47 = 8)' (D, - ¢y = o.

This form of the algorithm also suffers the difficulty of D 41 not
necessarily being positive definite at each iteration for an arbitrary
function. This difficulty can be avoided by applying Davidon's method

of assuring boundedness. D, ;) may be written as

83+10a8n+1, PnVnVaDla

D =p -
n+l n (
vpPaYn Ba+1PnBntl

28
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v
or Do =D+( - 1)PnVaVnPn

n+1 n n [] D
: 8n+1°nBa+l

: '
- where g =1- 8n+1 nBnt1 .
\
VnloYn

Following Davidon, A, is chosen by the above relation whenever possible,
otherwise such that oz, <B where 0<a<l<f<w in order to assure
ax' Dy x<x "D x<Bx’ Dy x
for any x.
3. COMPLETE RANK-ONE ALGORITHM FOR FUNCTION MINIMIZATION
The complete algorithm proceeds as follows:
(1) Initially set D, = I and pick a, B such that 0<a<l<B.
Choose an arbitrary x, and ccmpute f(x,) and g(xo) = grad f(xo).
(2) Compute f(xn - unDngn) for a;, = 1, 1/2, 1/4, ... until
£(x, = a;De8n) < £(x)
(3) Set o, = ~o D8, and X 49 = X, + 0
Compute g,4q = 8(xn4)) = grad £(x,,q)
and set Yo ® 8o+l = 8n°
Vp = Y, t a8, = 8wl ~ (1 - agdzy

L
and vy, = Bn+1PnBnal
VaPnYn

(4) 1f Yn>1 - o set An = q,
if Yn<1 - Bset A =8,
otherwise set A, = 1 - y,.

'
(5) Set D, =Dy (A= 1) Dr:VnVnDn
8n+1Pn8n+1

(6) Repeat steps (2) through (5) until selected ervor tolerances(s)
is (are) satisfied. One or more of the following error tests
may be used:
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Hegpall < €15 8141Pabney < oo
£0x) - £0x 1) < €4 and l'onil <€

It is interesting to note that any algorithm which generates re-
cursive estimates to the inverse of the Hessian as do the Fletcher-
Powell algorithm, Davidon's Variance algorithm, or the modified
Davidon algorithm presented above can be expected to exhibit numeri-
cal difficulties whenever the Hessian or its inverse is singular at
the minimizing point. The following examples illustrate simple problems
with this property.

Consider the problem of minimizing f(x,y) = x2 + ya. The first

and second derivatives are VE(x,y) = (2x%>and

4y
eix,y) =[2 o
0 12y%|.

Clearly the minimum is at (x,y) = (0,0) where VE(x,y) = (0,0)' but

V2£(0,0) =|2 é]is singular. Also,
00

1/2 0 e |1/2 0
, | 70
0 oo

12y2 .

vE(x,y) "L =

Any algorithm which attempts to estimate \72f(x,y)"1 can well be ex-
pected to have terms which tend to become unbounded as the solution is
approached.

For an example of the inverse condition, consider minimizing

f(x,y) = x2 + y4/3. Then, {ormally, V£(x,y) (;/3 1/3)

4 - "l
_y2[3|

Clearly the minimum is at (x v)

and sz(x,y) =|2
0

"oS,

(0,0) and in this case

vzf (x»Y)-l = 0 0
—4‘ *
9

0
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In this case, any algorithm which attempts to gcnerate sz((),O)'1 can
be expected to become singular.

In thc usuai formuiation of the Fletcher-Powell algorithm the
matrix "n is tested at each iteration and if any elements become too
large or too small the algorithm is re-started. Thus, in the worse
case, the Fletcher-Powell algorithm would de-generate into the usual
gradient algorithm. Davidon's algorithm, both the original and as
modified here, provide assurance (through a,B8) that the computations
can proceed by making conservative estimates to the inverse of the
Hessian.

The relative speed of Davidon's algorithm compared to conjugate
gradient and Fletcher-Powell algorithms was reported on in Reference

11 . Those results indicate the Davidon method is the superior
algorithm for the solution of most of the test problems considered.
In the few cases where another algorithm was found superior the
differences were either marginal or, as in a few cases, the Fletcher-

Powell algorithm arrived at an exact solution.
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SECTION IV
DIRECT APPLICATION OF RARK-ONE

Although rank~one methods have been used to construct algorithms
for minimizing arbitrary functions, the direct application of rank-one
to minimizing special classes of functions has been overlooked. Con-

sider, for example, minimizing the function
£(x) = 1/2][x|]% + 1/2k(a - m'x)?

where x, m€R® and k, a are scalars. The gradient of f at x is
VE(x) = x + k(a - m'x)(-m).

The necessary condition for f to be minimum at x = x* is that the
gradient (Vf(x*)) be zero. Furthermore, since m'x is a scalar, (m'x)m
can be rewritten as m(m'x) = (mm')x, where mm' is the outer or tensor
product, i.e., an nxn rank-one matrix. Use this fact and set the

gradient to zero to obtain
x* - kam + kmm'x* = 0
or

(I + knm')x* = kam ,
r

The rank-one matrix inversion technique (Section III) is applied to

obtain directly

x* = (I + kmm')-lkam

kmm

(1 1+ km'm Ykam
ka n
1 Fkm'm

More complex forms can be handled with little difficulty. Let M

be a m x n matrix, a an m-vector and consider minimizing

£ = 172] Il 2y + 172kl 2 - o [
= 1/2x'x + 1/2k(a -.Mx)'(a - Mx),
32
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The gradicat of this function is given by

VE(x) = x + k(-M*)(a - Mx} = x - kM"a + kM"Mx.

3 Again, for a minimum of £ at x*
E vE(x*) = (I + KM'"M)x* - kM'a =0

or x* = (I +k'M) lar'a

To clarify the structure of M'M, let m  be the :lE row of M represented

i

as a column vector, m,, the _'1ﬂ element of m, as well as the i,jE

1)

element of M.

m
Since { M'™ *1‘1 = kEl LWL

and  mm = oy [ B oo By
mal
n
= [ma™a ™t BT ]
Mea™1 ™2™k e 2™k
Lmknmkl Men"k2 e Pk kn
it follows that
M'M = ‘f 1.1kml'(-
k=1

m

Now I + kM'M may be represented as I + z kmimi and its inverse may be
i=1

computed recursively by repcated application of the rank-one inversion

33
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method. The question of the existence of (I + kH'H)-l is answered in
Theoren 1I which follows shortly. Formally, the mcthod of computing

as+ kH'H)—l is derived recursively as follcws:

Set C =1 D =cl-1
o () o
_ kD ».,m!D
C,=1+imn p.=cl=p °"1"10
1 11 1 1 . 1
l+mn'De
1l o1l
kD, = =D
-1 i-1ii i-1
C,=C + kn.m' D =C_ " =D -
i i-1 i1 i i i-1 1+ kn;Di_lli
[} ~1 e §
C =14+ kMM D =C = (I + KM'M)
n n n

Note Dn is computed in precisely m steps (m = row order of M) and the Ci's

need not be computed since Di can be computed from Di-l’ », and k. For

this problem, x* = qm(kH'a) is the required solution satisfying Vf(x*) = 0.
1. APPLICATINN TO AN AIRCRAFT WING-ROOT BENDIKG PROBLEM

The above rank-one method was used to determine the optimuz air-
craft wing control surface deflections requirnd to minimize a specified
penalty function (References 8,9). The objective of the problem was to reduce
wing-root bending moments through active control of trailing edge control
surfaces on the wing. 1In a physical application such reduced bending
moment loads could lead to reduced structural requirements, thus reducing
the aircraft weight and improving aircraft performance, or alternatively
lead to an expansion of the aircrafi operational envelope. An immediate
consequence of the control surface defiections is to change other im-

portant aircraft wing characteristics, principally 1lift, pitching moment

34
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and drag. These alsc affect aircraft performonce.

For most agplicatioes, increased lift ar a givem argle-of-artack
is desirshle cecauwst = increzse in vertical zcoelerstion czx be obtainsd
with less increase in wing angle-of-attack. This leads to less drag

and hence more efficient operation.

Ary chznge in wing-gemerated pitching moment would recuire changes
in aircraft trim to generate balancinz moments. Although trim changes
can be accomplished automatically, this adds systen complexity ard
interface problems. The desire to avoid complexity is motivated by

the usuvally valid supposition that the more coxplex systex is less re-
liable.

From drag considerations and because linear aerodynaxzic theory
was used, it was desired to restrict the emagnitude of control surface
deflections. The use of linear aerodynanic theory, in addition to being

conceptually and computationally simpler, was necessary to provide the

linear system description.

The mathematical model of this problem was formulated as follows:
Changes in wing 1ift, pitching moment and root bending can he repre-
sented, assuming linear aerodynamics, as a linear function of the control
surface deflections; therefore let 8§ = (61, 62, cees Gn) represent the
deflections of the wing control surfaces, ACL = mié the change in wing
life, ACH = méé be the change in wing pitching moment, ACRB = msé the
change in wing-root bending moment. The following cost function was
formulated whi-h when minimized would tend to minimize wing-root bending
moment while holding changes in pitching moment small, maximize the

change in lift 2nd maintain reasonable control surface deflections:
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34) = K, (56, + K,(e0)2 - Ky(ec,) + 1/2fel?
vhere the weighting factors, K, !2, =4 ‘3’ a2re asscmed kmown a priorf.

The solution to this problem is readily odtairced by 2 single zpplica-

tion of the rarnk-one method.

Although the solutions are valid the results are difficult to
irterpret due to the fact that each solution represeats z different winmg-
iift condition. Tke problem was reformszlated at a counstant 1lift condi-
tion. Specifically, an increment in angle-of-attack was ircorporated
to allow the wing to generate the same lift with or without controls
deflected. The more complete representations for the changes in wing

characteristics are:
ac - 316 + chc,
8y = mi8 + G,
ACpy = 356 + Cnac.

Thus for constant 1lift ACL =0 and a = - -c%-ié.

a
Then the changes in pitching =-=ment and wing-root bending at constant

1ift are:
G _
4Gy = od - — 'S = 'S
L 1 2
(V]
cRBa

= m'A - LF PP |
ACRB m36 n'é m36 .

Go 1
Firally, from lincar aercdynamic theory, the induced drag cf a

wing is minimum when the wing pressure distribution is elliptical.

Therefore, an additional term was inclured to represent the deviation of
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the predicted pressure distribotion from elliptical. Specifically, the
syamrise distribution as 2 fomction of the mormelized semispan 0 was

represented 2s c3(n) = ¢z () + c; (Ao + c; (2)5 and the elliprical
[ (.1 é

distributico as c!eulp(q) = 2—?‘- /1 -l Fellowing the zhowe procedure
for correcting the angie-of-zttack change,

- 2y (n) .
10y, @ "2 - [E'L_ T=7 - (rs)] - s ® -
This is discrerized for k spamwise locatioas (ni, i=1,. . .,k) then 2
measure of the spamwise distribution deviation from elliptical is given

by ||1° - 28]|2, vhere

2
[+]

- i
Cy ('li)
Il =, - 2=,
3 Lo

and the norm is in Rk.

Finally, the f£ollowing cost function was formulated to =inimize
wing-root bending, change in pitching moment, control surface deflections

and spanwise distribution error:
= 2 2 - 2
J(8) = Ky (8Cpp) + £,(8C )T + 1/2]|es||Rn + xgl[2, - #8]13x
= KyEp8 + K3(W38)2 + 1/28"6 + K (hy= 18)" (£,-46)

The minimum of this function is obtained by computing the gradient and

equating the gradient to zero. The gradient is given by
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vI(E) = K=, + xﬁ;& + &+ Ks(-m')(xo-M)

=(1+ 53;3;; 5 xs,m'm)asexliz - Kt

and the valee of & for whick TI(E) = 0 is given by

$- e rmE + kg, - KE).

The mirimizing & can then be cbrzined by k#l iteratioes of the ranmk-

one method.

In both of the zbove formuiations of the problern the weightirg
factors, K;"s in the cost functioa are presumed known. As is often the
case in this type protlem, this is generally rot true. However, the
solution to the problem for a given set of Ki's can be ccmputed extremely
rapidly on a digital computer using the rank-one mcthed, making a
systeaatic search over a wide variation of the seighting factors a
practical approach to obtaining 3 realistic solution. For example, a
progra=s written for the CDC 6600 computer to solve the above problenm
cozgutes the basic matrices and vectors required (A,ni's, etc.), incre-
ments the Ki's in a systercatic fashion and computes over 3,000 optimal
6's in approximately 10.0 seconds central processor, CP, time. With
such a volune of data, care had to be taken in the search pattern and

output format to avoid an overvhelmwing ou.put voluce.

2. DERIVATIOK OF THE DIRECT RANK-ONE METHOD
In the preceding development only the solution of the necessary
condition for an extremum, Vf(x*) = 0, was cunsidered. For the simplest

form, a lincar combination of quadratic terms with positive coefficients,

if an extremum cxists it must be a minimum. The addition of linear terms

~n
ble
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causes mo particular &ifficulty simce the quadratic terss can be ex-
pected 7o evextually domizate. For the more general problem where the
wveighting factors are arbitrary, the rack-coe method 2lso provides

some information on the mature of the solutiom.

For any of the above exzmples the grziient is represented by the
gereral form ¥f(x) = Cx + a2, uhere C is 2 matrix and 2 a vector. The
second derivative is 7214x) = C. The foliowing Lemma provides informa-

tion on the positive definritemess of C.

Lemsma 11
If C, and D, = Cg! are positive definite,

]
1 an-n- nnn

Dat1 = Cpgy = (Cy + k%n;)-l = Pn~ T3 imDm,

and 1 + kz"‘Dnnn>0, then C,,; and D, are positive definiie.

Proof

Yor an arbitrary u,u'Dnu > 0 therefore the ratio

1 ] '} L ]
© Dn+1u =7 . X u Dnu o nr’n“
u'Du u'Dnu l+ka'D e
n naon
k='Dn (u'D a )2
= 1 nann nn

Dy (u'Du) (=D m)

- . 1 ] 2 v 1 ]
By the Cauchy-Schwarz inequality (u Dnm u) < (u Dnu) (mnDnmn) where

equality holds if and only if u is a scalar multiple of m_. Clearly
u'Dn_uu n
the ratio = 11if v.x'Dnmrl = 0 and this ratio is furthest frera one
u'Dnu
vhen u is a multiple of LI in which case
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w'D %= 1- ka D m
e Tewps,

= 1
1+ h:nbnnn .

Let o = Min § 1, (1 + ke’d )71}

|

and 8 = ¥ax!1.(1 # kn;nnnn)'li
Then au'Dnu < n'Dn',lu < Bu'pnu

= 1]
t Also, for Cn+1 Cu * hnnn .

' 1. \2
'cn+1'_1+k("n)
: v'Cnv v'Cnv

2
=1+koDw v'ny)
(v'Cnv) (';Dn‘n) .

Since Cu

~1 < s
D, and C n and D, are positive definite

; (v'm“)2 < (v'cwv) (mpDomy),

where equality holds if and only if v is a scalar multiple of D Thus

1 ]

the ratio v CoeiV is one if v'mn = 0 and furthest from one when v is a
V‘Cnv

multiple of m, in which case

= '
Let vy = Min { 1, 1+ kmnDnmn*

Lo




peard L g igs ¥

TEr

FIoICERE IRY

AFFRE~TR-T2=TF

and 2 =tax{l, 1 +impm }

then rv'cnv cv'C v <2 v'Cav,

Thas the denominator, 1 + kn;Dnnn, provides a necessary and suf-
ficient condition for the invertibility of Cos1» 1-e-5 the existence of
Dos1s by Lemma I and a sufficient condition for Coyy and D ., to be

positive definite by Lemma Ii.

Before proceeding to a proof of the rank-one metho¢ . the following
observations are made to simplify the notation. For the problem of
miniaizing

€60 = [Ixl12, + & lla - il 1Za + Kyl 1, - Axl12
the gradient is given by

VE(x) = 2x + 2k;(-M')(a - Mx}

+ 2k2(~h') (xo-Ax)

= 2(1 + kill'!( + sz'A)x - Zle'a - Zkzh'lo,

If x* minimizes f then VE(x*) = 0 and if (I + kl}‘!'l( + sz'A)‘l
exists, then x* = (I + kMM + k,A")"1(iM'a + kyA") ). Furthermore,
if (1 + kll{'H + kZA'A) is positive definite then f has a local minimum

at x*,

As before let m,, i = 1,2,...,m, be the i-t—‘l row of M and Xi,i=1,

1’

.--sp, be the i row of A. Then (1 + kM'M + kyA'A) can be written as

1

N
I+ Z nivivi
i=]

where N=m+p
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kl i=1,...,m
'Ii i
kz i=mtl,...,mép
‘-1 1i=1,...,m
vi -
Af g 1 =mil,... =ip.

Jefine C& ané Dk recursively for k = 0,1,...,N as follows:

G =G ¥ mvk 4 = 1+4avb v

Ny
Dy =D ;- o D1 Vil g,
Theorer: 11

With ck’dk and Di as defined above

.}

= |

: (a) G, =1+ nv,vy
3 i=1

(b) so long as d1 $0,i=1,...,k
l).k = cil and in particular for k = N,
- = D
DN cN a+ izlnivivi)

(c) 1f dy > 0 for all k = 1,2,...,N, Dy is
positive definite,
Proof
(a) By construction:

c, =1,

Cl = 1 + nlvlvi,
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Cz = Cl + n2V2Vi

= + ' 4+ '
T+nvv, 099

2
= I+ ) novov!
41=1 17171

k
=I+ ) nvov!
% (£,

N
=I+ } ngvv!
G (LML

(b) By induction:

Initially Co =1ar.D, = C;I = I. Suppose the assertion
holds for k-1, i.e., D,_, = Czl;, and d; # 0, for 1=1,...,k-1. Now 1if

dy # 0, D, exists by Lemma I and

nk
Gy = (g + Mevievie) (D = 3 D"k

e '
= C1Pk-1" & - 1Pk-1Vk Vi Pye-1

. n
LAY é"k"i"k-lvk"i”k—l.
k

Since ck_lnk_l = I and vka_lvk is a scalar, the above may be rewritten

ag Nk
G = T -3 ViVkPk-1 + McViViDk-1
"

- ' '
e kP10 ViK1

L3
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M, '
= I ~ dk vkkak"l (1 - dk + nkaDk_lvk)

= I,

Where dk =1+ "kvink-lvk is used. Thus the assertion holds for k.
Furthermore, if d, # 0 for k=1,...,N then D = Cil for k=1,...,N and

in particular, from (a),

>
b
2
]

15317

N
Dy = cﬁla a +121 niv:'_vj'.)“1

{(c¢) By induction:
Clearly D, = C;1 = 1 is positive definite,

A Suppose the assertion holds for k-1, i.e., Dk—l is positive definite.

'
E If di > 0 then by Lemma II the ratio U Dkl jies between 1 and
]
u'D, ,u
d;l > 0 for arbitrary u. Hence, u'Dku is positive for all u which im~
Dy 1s positive definite and the assertion lolds for k. If dy > 0 for

allk=1,...,N then Dy is positive definite.

It should be noted that the matrices C;, need not be computed since
g 13
and 4, can be computed from D, ,, v, and n, directly. ‘fhe denominator
k k-1* "k k
dk provides a convenient check: if d, is zero (or sufficieatly small)

then C; is singular and D, fails to exist (Dk may be numerically un-

G tractable); 1if dk is positive at every iteration then the resultant ex-
é tremum is the minimum since DN is positive definite. However, if dk is
g negative for one or more iterations, DN may still be positive definite
i since Lemma II provides only a sufficient condition. In fact ‘t may

} happen that I + 151 nivivl is invertible, and even positive definite,

however an intermediate D, may fail te exist because d, is zero. In

L
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such a case, a reordering of the steps will correct the difficulty as
shown below.

Suppose all steps up to the nt—h-. n<N, have been accomplished and

d, =1-nvpDy1vy = 0. Then D, fails to exist. The role of nyv vy

and n_.,v Vo4, may De intechanged, then En =1+ npy3V 43004101 1S

computed and presumed non-zero. Then

- T+l .
Dg = Dy =73, Da-1Vn#1V -1 Do

exists and is the inverse of Cn= Cn-l + n, +1Vn+lvt'1+l.

Now the .~mm nv v, is again considered

a =1+nv'3v

nl nnnn
1] nn+1 L
=1+ nvp(Dy - Dy~1Vn+1Pn)Vn
n.n
- ' _ nmntl . .
1+ nnvnnn—lvn d, vnl’n-lvn-!-lvn-i-lnnvn

“n"n+1 \ 2

== a, SALNE LD R

since the first two terms form d, = 0. In general dn4) # 0 and hence

- Nn — "
D = D“ - = DnvnvnDn exists.
At

A simple numerical example is presented to illustrate this special
1
case. Consider the problem of inverting I - ((l))(l,O) + (l) (1,1).

Proceeding as usual, set Do = 1 and compute dl =1+ (-1)(1,0) (é) =

l1-1=0.

bs




AFFDL-TR-T2~-TT

Since D; fails to exist, the role of (1,0) and (1,1) are inter-

changed and d1 is computed as d1 =1+ (1)(1,1) (i) =1+4+2=3,

Therefore, Bi =1~ %(i)(l,l) = 2/3 ~1/3

-1/3 2/3
= =1 2_1
Now, picking up the first term, d2 =14+ (—1)(1,0)D1(0) =1 - 373
- (-1) - 1 -
and D2 = Dl - ']-—/-3—' Dl(o) (1,0)D1
= 2/3 -1/3 2/3
-1/
-1/3  2/3
- |2 -1
-1 1
- .

The correctaess of the solution is readily verified as the inverse of

1- @0+ da, - [1 1]
1 zJd.
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SECTION W
CORCLUSIONS

The main topic of this dissertation, computational! methods fo; the
solution of unconstrained minimization problems, is covered in three
parts; generalized descent algorithms, a rank-cne minimization technique
for the general problem,and a direct rank-one method for a special class
of problems. Although each topic relates to unconstrained minimization,
the scope is successively decreased as the specialization is increased.

The theorem on generalized descent algorithms, Theorem I, demon-
strates the essentlal properties of a descent algorithm. Here a descent
algorithm is defined to be a computational method in which, at each iter-
atlion, a descent direction is generated and a singie~dimensional search
is conducted for a minimum. Since the setting is highly abstract, addi-
tional specialization is included and the theorem is applied to the thr;e
descent algorithms in common use: tpe gradient method, conjugate gradients
and the Fletcher-Pdwell method. The essen;ial property of descent
algoricthms, cﬂoosing a ‘escent direction and the search for a minimum at
each iteration, is sufficient to cause the sequence of function values
to monotonically decrease. An additional property is required to assure
the derivative of t e function goes to‘zero.

The descent direction generated by the algorithm must be strict in
the sense that convergence of the inner product [£'(x),¢(x)] to zero
must imply convergence of the derivative to zero. This condition is made
rigorous in condition (ii) required of the function ¢. This condition
and the uniform continuity of the derivative f' are used to demonstrate

the derivative must converge to zero.

by
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Although Theorem 1 demonstrates the common properties of descent

ALl

algorithms, it fails to provide any information on one very important
property of all such algorithms, conve.geni.e rate. Convergence rate
involves not only the amount of improvement at each iteration but also,
for very practical reasons, the computational time required to accomplish

the iterations.

One of the common properties of descent algorithms, the single-
3 dimensional search can also be a drawback in that this is generally the

most time consuming step of each iteration. Therefore an algorithm

whichk minimizes a function without requiring repeated single-dimensional
i searches for a minimum might be superior to any descent method. One

such method, Davidon's Variance Algorithm (Reference 13), has been shown to be, in
3 many cases, superior to the three common descent algorithms (Reference 11).

Davidon's method is discussed in Section III.

3 A nev derivation of Davidon's method is presented. This deriva-
tion provides a clearer insight into the structure of the algorithm by
considering the algorithm as repeated applications of the rank-one matrix
inversion tecinique. Although the rank-one method would be exact when
applied to a quadratic form and would require no single-dimensional
search, certain added computational precautions must be included if the
'; method is to be used to minimize an arbitrary function. One of these is
providad by Davidon and assures the matrix approximation to the inverse
of the Hessian is well behaved. Another precaution provided by this
author assures only "good" estimates of tie solution are used to update
the approximation of the inverse of the Hessian. Although a linear

search is involved, only the function value is computed and the function

S TR it i i s AN L P

need only be decreased not minimized. As a result, for each iteration

L8
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both the number of test points is reduced and the complexity of compu-

3 tations at 2ach test point is reduced.

An extension of the Davidon algorithm to the problem of minimiz-
ing an arbitrary function defired on an infinite dimensicned space such
as a functior space is highly interesting. In the finite dimensional
case the outer product of vectors, uv', can be represented 2s a matrix.
If u and v belong to a function space, the representation of uv* is not
entirely obvious. However, since most problems require digital computa-
tion, and the representation of a function is necessarily discretized,

the function space may be considered as R¥ with N very large.

The third area considered in this dissertation applies the rank-
one method to a special class of problems, Although the class of prob-
lems to which the method a2pplies is specialized, it is not uncomsmon.

In fact many preliminary engineering problems are in this class where
the cost function is a combination of linear and quadratic terms each
wveighted by a penalty factor which is constant but unknown. The rank-~
one method provides a rapid solution to the problem. The method also
3 provides necessary and sufficient tests for the existence of an extre-

mum and a sufficient test for the solution to be a minimum.

Extension of the direct rank-one method to problems in a function
7 space is of continuing interest to the author. As noted for the ex-
tension of Davidon's method, care must be observed in the interpreta-

tion of the outer product. Since the number of iterations of rank-one

R T

A required to obtain the solution is determined by the structure of the
cost function to be minimized, not the dimension of the underlying vector

space, application of the method in a function space has possibilities.

49




T PR AT TR L TIRRTIE RN T P ]

AFFE~TR-T2-TT

To date the class of problems iz 2 function space vhich may be solved
by the rank-one method is very restricted 2nd the set of known appli-
cations is empty. Finally, the problem of representing functions on 2

dig:~al computer still exists.

To sumnarize, the following extensions appear to be promising
areas for further investigation. Application of Theorem I ‘0 other
descent algorithms. Application of Davidon’s rank-one method to a large
sample of test problems to determine in a practical application its
computational speed. Application of Davidon’s method in a function space
might be fruitful if first the direct rank-one zethod can be successfully
applied.
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